ON EXACTLY m TIMES COVERS

BY

ZHI-WEI SUN^{*}

Department of Mathematics Nanfing University Nanjing ~10008 People's Republic of China

ABSTRACT

In this paper it is shown that if every integer is covered by $a_1 + n_1 \mathbb{Z}, \ldots, a_k +$ $n_k \mathbb{Z}$ exactly m times then for each $n = 1, \ldots, m$ there exist at least $\binom{m}{n}$ subsets I of $\{1, \ldots k\}$ such that $\sum_{i \in I} 1/n_i$ equals n. The bound $\binom{m}{n}$ is best possible.

Let $a + n\mathbb{Z}$ denote the arithmetic sequence $\{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$ We call

$$
(1) \qquad \qquad \{a_i + n_i \mathbb{Z}\}_{i=1}^k
$$

an exactly m times cover if each integer belongs to exactly m of the sequences. An exactly one time cover is also said to be an exact cover.

It is well known [3] that $\sum_{i=1}^{k} 1/n_i$ equals m if (1) is an exactly m times cover, in particular $\sum_{i=1}^{k} 1/n_i$ equals 1 if (1) is an exact cover.

Porubský once asked whether each exactly m times cover is a union of m exact covers (cf. [2]). In 1976, Choi constructed an exactly 2 times cover which is not the union of two exact covers. (See Porubsky [3].) For $m \geq 2$, the sequences in Choi's example, together with $m-2$ sequences \mathbb{Z} , form an exactly m times cover which is not the union of m exact covers. Recently Ming-Zhi Zhang proved in [6] that for each $m = 2, 3, 4, \ldots$ there exists an exactly m times cover no subcover of which is an exactly $n < m$ times cover.

Despite the negative answer to Porubsky's question, we give here a result which has a positive aspect in some sense.

^{*} Research supported by the National Nature Science Foundation of P.R. of China. Received July 7, 1991 and in revised form January 20, 1992

THEOREM: Let (1) be an exactly m times cover. Then for each $n = 1, \ldots, m$ *there exist (at least)* $\binom{m}{n}$ subsets I of $\{1, \ldots, k\}$ such that $\sum_{i \in I} 1/n_i$ equals n, in particular there are (at least) m subsets $I \subseteq \{1,\ldots,k\}$ with the property $\sum_{i \in I} 1/n_i = 1.$

To prove it we need a lemma.

LEMMA: Provided that $\{a_t + n_t \mathbb{Z}\}_{t=1}^k$ is an exactly m times cover, for any integer *x we have the identity*

$$
\prod_{t=1}^{k} (1 - z^{N/n_t} e^{2\pi i (z + a_t)/n_t}) = (1 - z^N)^m
$$

where $N = [n_1, \ldots, n_k]$ is the least common multiple of n_1, \ldots, n_k .

Proof: Notice that any zero θ of the left side satisfies $\theta^N = 1$. Furthermore, for each $u \in \{0,1,\ldots,N-1\}$, $e^{2\pi i u/N}$ is a zero of multiplicity m of the left hand side because $-u-x$ is covered by $\{a_t + n_t \mathbb{Z}\}_{t=1}^k$ exactly m times.

We remark that both the above lemma and the main result of 3. Beebee [1] are easy consequences of a more general theorem (cf. Theorem 3 of Sun [4] and Theorem 4 of Sun [5]).

Proof of Theorem: Suppose $r \geq 0$. Letting $z = r^{1/[n_1,...,n_k]}$ we obtain from the lemma

$$
\prod_{t=1}^k (1-r^{1/n_t}e^{2\pi i (n+a_t)/n_t})=(1-r)^m, \quad n=1,2,3,\ldots.
$$

Hence for all $n \in \mathbb{Z}^+$ we have

$$
1 - \sum_{t=1}^{k} r^{1/n_t} e^{2\pi i (n+a_t)/n_t} + \sum_{1 \le t_1 < t_2 \le k} r^{1/n_{t_1}+1/n_{t_2}} e^{2\pi i ((n+a_{t_1})/n_{t_1}+(n+a_{t_2})/n_{t_2})} - \cdots + (-1)^k r^{1/n_1+\cdots+1/n_k} e^{2\pi i ((n+a_1)/n_1+\cdots+(n+a_k)/n_k)} = (1-r)^m.
$$

For $s > 1$, $\sum_{n=1}^{\infty} e^{2\pi i c n} / n^s$ converges absolutely, and by the above

$$
\sum_{\emptyset \subset I \subseteq \{1,\ldots,k\}} (-1)^{|I|} r^{\sum_{i \in I} 1/n_i} e^{2\pi i \sum_{i \in I} a_i/n_i} \sum_{n=1}^{\infty} \frac{e^{2\pi i \sum_{i \in I} n/n_i}}{n^s}
$$

=
$$
\sum_{n=1}^{\infty} \frac{1}{n^s} [(1-r)^m - 1],
$$

г

i.e.

$$
\left[\sum_{\substack{\emptyset \subset I \subseteq \{1,\ldots,k\} \\ \sum_{t \in I} 1/n_t \in \mathbb{Z}}} (-1)^{|I|} r^{\sum_{t \in I} 1/n_t} e^{2\pi i \sum_{t \in I} a_t/n_t} + 1 - (1 - r)^m \right] \zeta(s)
$$

+
$$
\sum_{\substack{\emptyset \subset I \subseteq \{1,\ldots,k\} \\ \sum_{t \in I} 1/n_t \notin \mathbb{Z}}} (-1)^{|I|} r^{\sum_{t \in I} 1/n_t} e^{2\pi i \sum_{t \in I} a_t/n_t} \sum_{n=1}^{\infty} \frac{e^{2\pi i n \sum_{t \in I} 1/n_t}}{n^s} = 0.
$$

Let $s \to 1$ from the right. Then $\zeta(s) \to \infty$, and if $\sum_{t \in I} 1/n_t \notin \mathbb{Z}$ then $\sum_{n=1}^{\infty} e^{2\pi i n} \sum_{i \in I} 1/n_i / n^s$ has a finite limit. From the equality we must have

$$
1 + \sum_{\substack{\emptyset \subset I \subseteq \{1,\ldots,k\} \\ \sum_{t \in I} 1/n_t \in \mathbb{Z}}} (-1)^{|I|} r^{\sum_{t \in I} 1/n_t} e^{2\pi i \sum_{t \in I} a_t/n_t} = (1-r)^m.
$$

The last equality holds for any $r \geq 0$, and by comparing the coefficients we get

$$
(2) \qquad \sum_{\substack{\boldsymbol{\theta}\subset I\subseteq\{1,\ldots,k\}\\ \sum_{\substack{\epsilon\in I}}1/n_{\epsilon}=n}}(-1)^{|I|}e^{2\pi i\sum_{\substack{\epsilon\in I}}a_{\epsilon}/n_{\epsilon}}=(-1)^{n}\binom{m}{n} \quad \text{ for } n=1,\ldots,m.
$$

Given $n \in \{1, \ldots, m\}$ we have

$$
\binom{m}{n} = \left| \sum_{\substack{\emptyset \subset I \subseteq \{1,\ldots,k\} \\ \sum_{t \in I} 1/n_t = n}} (-1)^{|I|} e^{2\pi i \sum_{t \in I} a_t/n_t} \right| \leq \sum_{\substack{\emptyset \subset I \subseteq \{1,\ldots,k\} \\ \sum_{t \in I} 1/n_t = n}} 1,
$$

so there are at least $\binom{m}{n}$ subsets I of $\{1,\ldots,k\}$ such that $\sum_{t\in I} 1/n_t$ equals n. This concludes the proof. \blacksquare

Observe that m sequences Z form an exactly m times cover. This example shows that the lower bounds $\binom{m}{n}$ $(1 \leq n \leq m)$ are best possible.

At the end we mention that in 1989 Ming-Zhi Zhang [7] obtained the following surprising result: If $\bigcup_{i=1}^k a_i + n_i \mathbb{Z} = \mathbb{Z}$ then $\sum_{i \in I} 1/n_i \in \mathbb{Z}^+$ for some $I \subseteq$ $\{1,\ldots,k\}.$

ACKNOWLEDGEMENT: I am indebted to the referee for his helpful suggestions.

References

- [1] J. Beebee, *Some trigonometric identities* related to exact *covers,* Proc. Amer. Math. Soc. 112 (1991), 329-338.
- [2] R. K. Guy, *Unsolved Problems in Number Theory,* pp. 140-141, Springer-Verlag, 1981.
- [3] Š. Porubský, *On m times covering systems of congruences*, Acta Arith. 29 (1976), 159-169.
- [4] Zhi-Wei Sun, *Several results on systems of residue classes,* Adv. in Math. (China) 18 (1989), 251-252.
- [5] Zhi-Wei Sun, *Systems of congruences with multipliers,* Nanjing Univ. J. Math. Biquarterly 6 (1989), 124-133.
- [6] Ming-Zhi Zhang, On *irreducible exactly m times covering system of residue classes,* J. Sichuan Univ. (Nat. Sci. Ed.) 28 (1991), 403-408.
- [7] Ming-Zhi Zhang, *A note on covering systems of residue* c/asses, J. Sichuan Univ. (Nat. Sci. Ed.) 26 (1989), 185-188, Special Issue.